Andrew Dancer:Kähler几何和Hyperkähler几何

459
关注
正在缓冲...
00:00 / 00:00
自动
    倍速
    • 2.0x
    • 1.5x
    • 1.25x
    • 1.0x
    • 0.75x
    • 0.5x
    100
    更多播放设置
    播放方式
    视频比例
    其他设置
    -人正在看
    已装填 0 条弹幕
    自动平衡不同视频间的音量大小
    平衡音量同时保留更多声音细节
    关闭音量均衡
    开启画中画
    宽屏模式
    网页全屏
    进入全屏 (f)
    关闭弹幕 (d)
    视频底部15%部分为空白保留区
    特殊颜色、运动形式的弹幕
    反馈
      40
      4
      34
      1
      https://www.youtube.com/watch?v=_1n5szeSnVo Nankai Symposium on Mathematical Dialogues Andrew Dancer:Kähler and Hyperkähler Geometry Andrew Dancer是一位英国数学家,现任英国牛津大学(University of Oxford)数学教授。Andrew Dancer主要研究微分几何(尤其是特殊曲率(special curvature)的度量,例如Einstein metrics和Ricci solitons。)、辛几何(Symplectic geometry)、hyperkähler几何和其他特殊几何。Andrew Dancer于1990年PHD毕业于英国牛津大学(University of Oxford),导师为英国/世界著名数学大师Nigel Hitchin。 ICM2014 Misha Verbitsky-Teichmüller空间、遍历理论和整体Torelli定理:BV1Qg411V72h
      弹幕列表
      弹幕列表
      屏蔽设定
      高级弹幕
      弹幕列表填充中...
      4.1万播放
      简介
      ICM2014 Misha Verbitsky-Teichmüller空间、遍历理论和整体Torelli定理
      47:35
      Misha Verbitsky:双曲几何与Morrison-Kawamata cone猜想的证明 Lecture-01
      58:30
      Misha Verbitsky:双曲几何与Morrison-Kawamata cone猜想的证明 Lecture-02
      59:40
      Misha Verbitsky:双曲几何与Morrison-Kawamata cone猜想的证明 Lecture-03
      01:01:43
      Misha Verbitsky:双曲几何与Morrison-Kawamata cone猜想的证明 Lecture-04
      01:01:01
      Andrew Dancer:Kähler几何和Hyperkähler几何
      38:39
      Nikon Kurnosov:Absolutely trianalytic tori on Hyperkähler manifolds
      19:26
      Andrey Soldatenkov:Hyperkähler流形的Absolute Hodge classes和Mumford-Tate猜想
      01:00:47
      Emanuele Macrì:HyperKähler manifolds and Lagrangian fibrations
      01:08:38
      Valentino Tosatti:K3曲面上的几何和动力学
      53:23
      Yoon-Joo Kim:The dual Lagrangian fibrations of compact Hyperkähler manifolds
      47:21
      ICM2018 Simon Donaldson:Kähler geometry和exceptional holonomy的一些最新进展
      01:04:38
      ICM2018 孙崧(Song Sun):Kähler几何中的Degenerations和Moduli Spaces
      46:52
      ICM2022 Bruno Klingler:介于代数和超越之间的霍奇理论(Hodge theory)
      42:10
      ICM2014 Alexander Kuznetsov:Semiorthogonal decompositions in algebraic geometry
      48:14
      ICM2022 Alexander Kuznetsov:同调代数几何(Homological algebraic geometry)
      01:00:12
      Zhiyu Liu:Brill-Noether reconstruction for Fano threefolds and applications
      31:34
      Fondation L’Oréal:发现2019年女性科学奖(Women in Science Award)获得者Pr. Claire Voisin
      03:24
      Claire Voisin:On the coniveau of algebraic varieties
      01:04:42
      Claire Voisin:Hyperkähler流形的几何和拓扑
      01:02:04
      Claire Voisin:On the Lefschetz standard conjecture for Hyperkähler manifolds
      51:51
      Claire Voisin:Triangle varieties and surface decomposition of Hyperkähler流形
      01:09:03
      Claire Voisin:Hodge structures, cohomology algebras and the Kodaira problem
      01:07:50
      Daniel Huybrechts:Geometry of K3 surfaces and Hyperkähler manifolds
      01:07:26
      Daniel Huybrechts:3 families of K3 surfaces
      01:02:41
      Yulieth Prieto Montanez:On the geometry of Hyperkähler manifolds
      01:42:38
      Izzet Coskun:Topics in Algebraic Curves(代数曲线中的主题)——1
      01:28:17
      Izzet Coskun:Topics in Algebraic Curves(代数曲线中的主题)——2
      01:27:16
      Izzet Coskun:Algebraic hyperbolicity——3
      01:31:36
      Izzet Coskun:Stability of normal bundles——4
      01:26:39
      Izzet Coskun:平面上点的Hilbert Schemes的双有理几何——1
      01:36:25
      Izzet Coskun:平面上点的Hilbert Schemes的双有理几何——2
      01:27:22
      Izzet Coskun:平面上点的Hilbert Schemes的双有理几何——3
      01:30:30
      Izzet Coskun:平面上点的Hilbert Schemes的双有理几何——4
      01:32:12
      Fabrizio Catanese:Nodal surfaces and Coding Theory
      01:02:56
      Fabrizio Catanese:Nodal surfaces, Coding theory, and cubic discriminants
      01:12:14
      【8th PRCM】Peter Ebenfelt:紧致严格拟凸CR-3流形的形变和嵌入(Deformations&embeddings)
      42:28
      Akito Futaki:横截耦合Kähler-Einstein度量、Sasaki流形上的Moment polytopes和体积极小化
      01:02:44
      Simon Donaldson:Closed 3 forms in Five Dimensions and Embedding Problems
      01:02:35
      Valentino Tosatti:Introduction to the Kähler-Ricci flow-Part 1
      58:09
      Valentino Tosatti:Introduction to the Kähler-Ricci flow-Part 2
      59:07
      Valentino Tosatti:Introduction to the Kähler-Ricci flow-Part 3
      57:59
      Vincent Guedj:Singular Kähler–Einstein metrics——1
      50:49
      Vincent Guedj:Uniform estimates through qpsh envelopes——2
      54:10
      Vincent Guedj:Pluripotential Kähler-Ricci Flow——3
      59:52
      Tat Dat To:Convergence of the Kähler-Ricci flow on varieties of general type
      59:31
      Yury Ustinovskiy:Variational Approach to Generalized Kähler-Ricci Solitons
      01:05:13
      Duong H. Phong:复几何中Monge-Ampere方程和其他完全非线性PDE的L^∞估计
      01:01:19
      Marcin Sroka:Monge–Ampère equation in hypercomplex geometry
      43:53
      Gunhee Cho:Intuition on Mabuchi functional
      01:12:07
      Gunhee Cho:Yau关于Calabi conjecture的复Monge–Ampère equation简介
      59:42
      Gunhee Cho:Calabi conjecture的Kähler-Ricci flow方法和Kähler–Einstein metric的存在
      58:58
      Vamsi Pritham Pingali:Calabi猜想与复Monge-Ampère方程(The Calabi Conjectures)——1
      01:01:03
      Vamsi Pritham Pingali:Calabi猜想与复Monge-Ampère方程(The Calabi Conjectures)——2
      49:36
      Vamsi Pritham Pingali:Calabi猜想与复Monge-Ampère方程(The Calabi Conjectures)——3
      52:48
      Vamsi Pritham Pingali:Calabi猜想与复Monge-Ampère方程(The Calabi Conjectures)——4
      55:04
      Vamsi Pritham Pingali:射影流形上广义Monge-Ampere方程的数值准则——5
      51:16
      Takeo Ohsawa:CR manifolds的嵌入和Kodaira-Spencer-Kuranishi deformations theory一瞥
      56:18
      Takeo Ohsawa:Kodaira-Spencer-Kuranishi形变理论、近似和Bundle-convexity中∂^{-}的L^2估计
      53:44
      Junyan Cao:On the Ohsawa–Takegoshi L^2 extension theorem
      59:54
      Junjiro Noguchi:Semi Abelian Varieties的解析Ax Schanuel和Nevanlinna理论
      56:08
      Yum Tong Siu(萧荫堂):Non-deformability和Frobenius nonintegrability的估计
      01:06:58
      Robert Bryant:On the Cartan-Kuranishi Prolongation Theorem
      01:03:49
      Simon Salamon:Lie groups and special holonomy
      01:03:18
      Spiro Karigiannis:A survey of results about G2 conifolds
      01:06:46
      Sema Salur:Calibrations in Contact and Symplectic Geometry
      01:16:28
      Nai-Chung Conan Leung:Instantons in G2 geometry
      01:16:44
      Mark Haskins:Collapse and Special Holonomy Metrics
      01:08:38
      Mark Haskins:Recent progress in G2 geometry
      01:14:53
      Frits Beukers:Periods and Dwork's congruences
      57:53
      Masha Vlasenko:Cohomology and Congruences
      01:09:36
      Masha Vlasenko:Calabi-Yau differential operators
      01:04:30
      Frits Beukers:p-Integrality of instanton numbers
      55:12
      Masha Vlasenko:Frobenius structure and p-adic zeta function
      01:03:40
      【IHES】Tom Bridgeland:Geometry from Donaldson-Thomas Invariants
      01:10:34
      Tom Bridgeland:Geometry from Donaldson-Thomas invariants
      01:24:50
      Tom Bridgeland:From the A2 quiver towards the Painlevé I T function
      01:11:09
      Dominic Joyce:代数几何中的Enumerative invariants和Wall-crossing formulae
      01:31:21
      Dominic Joyce:Kodaira-Spencer-Kuranishi Deformation theory和Kuranishi Space
      01:02:08
      【Vinberg Lecture】Maxim Kontsevich:Introduction to wall-crossing
      01:47:31
      Maxim Kontsevich:Fractal dimensions of critical loci
      01:08:49
      客服
      顶部
      赛事库 课堂 2021拜年纪