Yuansi Chen(陈远思):Kannan-Lovász-Simonovits (KLS) 猜想和Bourgain's slicing问题的最新进展——1

768
0
2023-01-01 19:08:03
正在缓冲...
22
1
22
3
https://www.youtube.com/watch?v=35NCkJBjKWc Centre de recherches mathématiques (6 octobre 2021 / October 6, 2021) Conférence Nirenberg du CRM en analyse géométrique / CRM Nirenberg Lectures in Geometrics Analysis :http://www.crm.umontreal.ca/2021/Nirenberg-Chen-Klartag2021/index_e.php Yuansi Chen (Duke University, USA) Conférence 3 / Lecture 3: Recent progress on the Kannan-Lovasz-Simonovits (KLS) conjecture and Bourgain's slicing problem I Yuansi Chen (Duke University, USA) Conférence 4 / Lecture 4: Recent progress on the Kannan-Lovasz-Simonovits (KLS) conjecture and Bourgain's slicing problem II Abstract: Kannan, Lovász, and Simonovits (KLS) conjectured in 1995 that the Cheeger isoperimetric coefficient of any log-concave density or any convex body is achieved by half-spaces up to a universal constant factor. This conjecture now plays a central role in the field of convex geometry, unifying or implying older conjectures. In particular, it implies Bourgain's slicing conjecture (1986) and the thin-shell conjecture (2003). While it is natural to expect convex bodies to have good isoperimetry (in other words, not look like dumbbells), the progress on bringing down the Cheeger isoperimetric coefficient in the KLS conjecture has been stagnant in recent years. The previous best bound, with dimension dependency d^1/4, was established by Lee and Vempala in 2017 using Eldan's stochastic localization, and matches the best dimension dependency Klartag obtained in 2006 for Bourgain's slicing conjecture. After becoming familiar with Eldan's stochastic localization technique in the previous lecture, first we aim to get familiar with the concept of "localization" and to view stochastic localization as an extension. Then we go through the Lee and Vempala (2017) proof to see in action a concrete application of stochastic localization.
7.4万播放
简介
Yanir Rubinstein:Convex meets Complex in Mahler's and Bourgain's Conjectures
47:27
【The Abel lectures 2024】Michel Talagrand:Chaining a long story
38:51
【The Abel lectures 2024】Sara van de Geer:统计学家对Michel Talagrand作品的评选
51:35
【The Abel lectures 2024】Sourav Chatterjee:Michel Talagrand's works on spin glass
36:32
【The Abel lectures 2024】Assaf Naor:Michel Talagrand almost everywhere
01:06:55
【The Abel lectures 2024】A conversation with Michel Talagrand&Torkild Jemterud
28:07
【The Abel lectures 2024】Michel Talagrand Advice to Young Mathematicians
04:28
【The Abel lectures 2024】Ursula Hamenstadt Advice to Young Mathematicians
03:40
【The Abel lectures 2024】Alice Guionnet Advice to Young Mathematicians
03:54
【The Abel lectures 2024】Sourav Chatterjee Advice to Young Mathematicians
05:20
【The Abel lectures 2024】Assaf Naor Advice to Young Mathematicians
08:42
ICM2018 Assaf Naor:Metric dimension reduction——A snapshot of the Ribe program
01:03:20
Assaf Naor:Probabilistic reasoning in quantitative geometry
01:09:58
Assaf Naor:An average John theorem
01:05:07
Assaf Naor:Extension, separation and isomorphic reverse isoperimetry
26:54
Assaf Naor:Reverse isoperimetry
01:16:01
Assaf Naor:An integer parallelotope with small surface area
01:13:55
Assaf Naor:Updates on the Lipschitz Extension Problem
02:26:11
Michel Ledoux:Poincaré inequalities in probability and geometric analysis
46:26
ICM2014 Michel Ledoux:Heat flows, geometric and functional inequalities
44:42
Vitali Milman:凸几何与分析中的代数相关结构及一些经典构造背后的原因
54:57
Vitali Milman:Jean Bourgain对渐近几何分析的影响;选题
42:50
Peter Sarnak&Avi Wigderson:A Deterministic Sample of Bourgain's Work
54:47
Elon Lindenstrauss:Bourgain's Discretized Sum-Product Theorem及其众多应用
42:11
Elon Lindenstrauss:Effective Density of Unipotent Orbits
53:06
Elon Lindenstrauss:关于Oppenheim猜想和Polynomial Effective Equidistribution的新有效结果
01:07:55
Emmanuel Breuillard:Entropy, Mahler Measure and Bernoulli Convolutions
56:16
Jean Bourgain:Sums of Three Squares and Lattice Points on the Sphere
49:43
ICM2018 Miguel Walsh:Characteristic subsets and the polynomial method
40:52
ICM2022 Konstantin Tikhomirov:non-Hermitian随机矩阵的Quantitative invertibility
42:56
Emanuel Milman:Sharp Isoperimetric Inequalities for Affine Quermassintegrals
58:42
Emanuel Milman:中心仿射微分几何与Log-Minkowski问题
27:44
Emanuel Milman:Multi-Bubble等周问题——新的和旧的问题
59:52
Emanuel Milman:The Gaussian Double-Bubble和Multi-Bubble Conjectures
58:07
Emanuel Milman:Functional Inequalities on sub-Riemannian manifolds via QCD
44:29
Jian Xiao:Bourgain-Milman Theorem的复分析证明
01:12:08
ICM2014 Marcus&Spielman&Srivastav:拉马努金图与卡迪森-辛格问题的解(Restricted invertibility)
50:42
ICM2022 Keith Ball:凸域的概率特征
40:36
Keith Ball:Restricted invertibility:向Jean Bourgain致敬
01:01:58
Keith Ball:在高维堆积球体(Packing Spheres)
57:12
Henry Cohn——Maryna Viazovska的工作:Sphere Packing&Modular Forms&Fourier analysis
18:24
Maryna Viazovska (EPFL):Fourier interpolation(傅里叶插值法)
56:21
Maryna Viazovska:The sphere packing problem(球体堆积问题)
01:37:18
Maryna Viazovska:The sphere packing problem and beyond
01:12:51
ICM2022 Ronen Eldan:通过Pathwise analysis揭示高维对象的Simplicity
45:11
Ronen Eldan:通过Pathwise analysis揭示高维对象的Simplicity
54:24
Ronen Eldan:Stochastic Localization及陈远思在Kannan-Lovász-Simonovits猜想上的新突破
01:10:36
Yuansi Chen(陈远思):Kannan-Lovász-Simonovits (KLS) 猜想和Bourgain's slicing问题
02:43
Yuansi Chen(陈远思):Localization schemes and the mixing of hit-and-run
59:31
Yuansi Chen(陈远思):Localization Schemes
01:00:16
Yuansi Chen:Log-Concave Sampling的Metropolis-Adjusted Langevin算法的极小极大混合时间
47:16
Yuansi Chen:Kannan-Lovász-Simonovits猜想中等周系数的一个几乎恒定的下界
01:01:26
Yuansi Chen(陈远思):Kannan-Lovasz-Simonovits (KLS) 猜想和Bourgain's slicing问题的最新进展——1
01:08:01
Yuansi Chen(陈远思):Kannan-Lovasz-Simonovits (KLS) 猜想和Bourgain's slicing问题的最新进展——2
01:04:44
Boáz Klartag:凸性和高维现象&凸体中的Isoperimetry和Eldan's stochastic localization——2
01:07:13
Boáz Klartag:凸性和高维现象&凸体中的Isoperimetry和Eldan's stochastic localization——1
01:14:43
Santosh Vempala:Reducing Isotropy to KLS An Almost Cubic Volume Algorithm
38:26
Yuansi Chen(陈远思):Recent progress on the KLS conjecture
42:16
Boáz Klartag:On Yuansi Chen's work on the KLS conjecture——I
45:55
Boáz Klartag:On Yuansi Chen's work on the KLS conjecture——II
46:29
Boáz Klartag:On Yuansi Chen's work on the KLS conjecture——III
46:38
Boáz Klartag:Complex Legendre Duality
57:30
Joseph Lehec:The Langevin Algorithm in the Non Smooth Log-Concave Case
59:44
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——1——1
58:44
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——1——2
50:35
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——1——3
01:07:21
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——1——4
43:33
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——2——1
01:03:31
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——2——2
46:02
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——2——3
01:13:00
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——2——4
36:23
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——3——1
01:01:16
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——3——2
47:54
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——3——3
54:53
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——3——4
50:31
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——4——1
01:00:57
Boáz Klartag:Isoperimetric inequalities in high dimensional convex sets——4——2
48:27
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——4——3
01:10:42
Joseph Lehec:Isoperimetric inequalities in high dimensional convex sets——4——4
37:50
Micha Sharir:组合几何中的代数技术
53:43
Noga Alon:Vitali Milman、traces and geometry
47:51
Leonid Polterovich:Persistence barcodes in analysis and geometry
58:25
Rolf Schneider:Poisson hyperplanes与convex bodies的相互作用
50:39
Apostolos Giannopoulos:关于isotropic log-concave随机向量生成的一些随机凸集
47:25
Jean-Michel Bismut:Hypoelliptic Dirac operators and the trace formula
53:54
Misha Gromov:Large dimensions, within and without
59:38
Alexander Litvak:Singularity of random Bernoulli 0/1 matrices
50:48
Sergey Bobkov:Moments of Scores
38:36
Leonid Pastur:遍历算子的Szegö型渐近迹公式及量子信息学的相关主题(Asymptotic Trace Formulas)
59:47
Yakov Sinai:Now everything has been started? The origin of deterministic chaos
52:18
Domokos Szász:Yakov Sinai——Mathematical billiards and chaos
49:06
Konstantin Khanin:Yakov Sinai——Between mathematics and physics
47:20
Gregory Margulis:Yakov Sinai——Kolmogorov-Sinai entropy and homogeneous dynamics
45:49
Laure Saint Raymond:What does entropy measure
55:03
Igor Pak:Combinatorial inequalities
01:37:53
Larry Guth:Metaphors in Systolic Geometry
59:05
Alexey Balitskiy:Systolic inequalities
20:36
Chiara Meroni:The Best Ways to Slice a Polytope(Hyperplane Arrangments)
37:42
Chiara Meroni:Convex Geometry and its Applications
16:16
Anna Gusakova:Concentration inequalities for Poisson U-statistics
49:17
Orli Herscovici:Gaussian B-inequality stability and equality cases
38:13
Alexander Koldobsky:Comparison problems for the Radon transform
53:06
Maria Alfonseca Cubero:On uniqueness questions of Croft, Falconer and Guy
32:53
Cristian González-Riquelme:Sharp Fourier restriction over finite fields
51:59
Lars Becker:On the Fourier weight of F2 polynomials
36:18
Francisco Escudero Gutiérrez:具有常数1的cb-Bohnenblust-Hille不等式及其在Learning Theory中的应用
40:42
Miriam Gordin:Vector-valued concentration on the symmetric group
45:13
Dima Faifman:Around the Nash problem for smooth valuations
38:34
Federico Glaudo:The Isoperimetric Problem in Cubes and Torii
22:53
Huy Tuan Pham:子集和、非平均集和凸几何中的加法结构
19:22
Joris Roos:Isoperimetric and Poincaré inequalities on the Hamming cube
01:00:17
Justin Salez:Entropy and curvature of Markov chains on metric spaces
56:36
Rocco Servedio:Sparsifying suprema of Gaussian processes
48:58
Anindya De:Sparsification of Gaussian Processes
01:14:27
Radek Adamczak:l^p_n-球小余维随机截面体积的极限定理
54:01
Alex Iosevich:Signal recovery, restriction theory, and applications——I
59:03
Alex Iosevich:Signal recovery, restriction theory, and applications——II
01:01:02
Alex Iosevich:Signal recovery, restriction theory, and applications——III
01:01:10
Alex Iosevich:Signal recovery, restriction theory, and applications——IV
58:22
Yuval Filmus:Structure theorems in Boolean Harmonic Analysis——I
01:00:38
Yuval Filmus:Structure theorems in Boolean Harmonic Analysis——II
01:00:35
Yuval Filmus:Structure theorems in Boolean Harmonic Analysis——III
01:07:02
Yuval Filmus:Structure theorems in Boolean Harmonic Analysis——IV
01:12:09
Alexandros Eskenazis:Functional inequalities in Metric Geometry——I
01:09:02
Alexandros Eskenazis:Functional inequalities in Metric Geometry——II
01:15:38
Alexandros Eskenazis:Functional inequalities in Metric Geometry——III
01:08:28
Alexandros Eskenazis:Functional inequalities in Metric Geometry——IV
01:14:24
Kateryna Tatarko:Isoperimetric problem from classical to reverse——I
53:01
Kateryna Tatarko:Isoperimetric problem from classical to reverse——II
50:25
Kateryna Tatarko:Isoperimetric problem from classical to reverse——III
50:55
Noam Lifshitz:Inverse results for isoperimetric inequalities——I
01:05:59
Noam Lifshitz:Inverse results for isoperimetric inequalities——II
01:14:17
Noam Lifshitz:Inverse results for isoperimetric inequalities——III
01:11:21
Noam Lifshitz:Inverse results for isoperimetric inequalities——IV
01:18:45
Galyna Livshyts:A discussion on the Log-Brunn-Minkowski conjecture
47:57
Galyna Livshyts:关于一个与Log-Brunn-Minkowski猜想有关的不等式
57:55
Galyna Livshyts:On a conjectural symmetric version of the Ehrhard inequality
24:19
Galyna Livshyts:On some tight convexity inequalities for symmetric convex sets
40:19
Galyna Livshyts:Geometric functional inequalities, old and new
45:57
Galyna V. Livshyts:High-dimensional phenomena (under construction)
59:11
Matthieu Fradelizi:Volume of p-zonoids and inequalities for determinants
26:40
Artem Zvavitch:Orthogonal projections and sumset estimates in convex geometry
55:10
Artem Zvavitch:Sumset estimates in convex geometry
01:05:00
Mathieu Meyer:On the volume of some sections of convex bodies
40:23
Roman Karasev:Envy-free division using mapping degree
46:05
Roman Karasev:An analogue of Gromov's waist theorem for coloring the cube
52:08
Roman Karasev:Covering by planks and avoiding zeros of polynomials
01:01:05
Matthieu Fradelizi:二维偶数log-concave functions的Mahler conjecture的functional form
40:02
Matthieu Fradelizi:Entropy, isotropic constant and Mahler's conjecture
55:30
Taehun Lee:On the L_p dual Minkowski problem
53:51
Dongmeng Xi:On the Gaussian Minkowski Problem
35:09
Stephanie Mui:On the Lp dual Minkowski problem for −1< p< 0
39:21
Vlad Yaskin:Euclidean ball附近5th和8th Busemann-Petty问题的解
39:44
Franz Schuster:Blaschke–Santaló Inequalities for Minkowski&Asplund Endomorphisms
42:30
Vlad Yaskin:Some problems about centroids of convex bodies
33:10
Liran Rotem:Brunn-Minkowski inequalities via concavity of entropy
26:51
Peter Pivovarov:How to prove isoperimetric inequalities by random sampling
01:01:37
Rotem Assouline:Brunn-Minkowski inequalities for sprays on surfaces
24:23
Dylan Langharst:Higher-order affine isoperimetric inequalities
26:42
Dylan Langharst:紧凸集的测度是否存在三角不等式?
25:16
Karl-Theodor Sturm:度量测度空间和Synthetic Ricci bounds
01:24:36
Karl-Theodor Sturm:度量测度空间的几何分析(Metric Measure Space)
01:09:49
Karl-Theodor Sturm:Metric measure spaces and synthetic Ricci bounds
48:54
Karl-Theodor Sturm:度量测度空间的Distribution-valued Ricci Bounds
50:23
Karl-Theodor Sturm:Entropy, optimal mass transport and curvature
01:15:42
Kazuhiro Kuwae:对于非负(m,V)-Ricci曲率的V-调和映射,当m为非正时,Liouville theorem
44:28
Kazuhiro Kuwae:被分布Bakry-Émery曲率下界tame的Dirichlet空间的Riesz变换
53:54
Yohei Sakurai:加权Ricci曲率的各种曲率条件及几何分析
43:41
Shin-ichi Ohta:Geometry of weighted Finsler spacetimes
39:15
Shin-ichi Ohta:在Ricci曲率有下界与ϵ-范围下的比较定理
42:35
Shin-ichi Ohta:Integral Varadhan formula for nonlinear heat flow
44:25
Nicola Gigli:Trading linearity for ellipticity-一种新的Global Lorentzian geometry方法
44:52
Shin-ichi Ohta:Barycenters and a law of large numbers in Gromov hyperbolic space
50:49
数据描述科学遇见系列「Optimal Transport Meets Data」:Shin-ichi Ohta:輸送距離の幾何学:重心,勾配流,そして曲がり方
52:31
数据描述科学遇见系列「Optimal Transport Meets Data」—高津飛鳥(Asuka Takatsu):Meet Monge
40:20
数据描述科学遇见系列「Optimal Transport Meets Data」—高津飛鳥(Asuka Takatsu):Meet Kantorovich
37:58
女子中高生のための「数理・情報・AI」最前線!第5回 高津 飛鳥 (研究員)
20:14
Asuka Takatsu:关于切片/分解最优传输度量的几何性质
53:36
Asuka Takatsu:Preservation of concavity by the Dirichlet heat flow
41:06
Paolo Salani:等周不等式-塑造现实世界的力量(Isoperimetric Inequality)
01:05:35
Hiroshi Tsuji:The functional volume product under heat flow
29:03
Neal Bez:Regularized Inverse Brascamp-Lieb Inequalities
01:35:38
Neal Bez:A Nonlinear Brascamp-Lieb inequality
01:00:07
Terence Tao:The adjoint Brascamp-Lieb inequality
57:25
Taryn Flock:The nonlinear Brascamp-Lieb inequality
29:55
Jennifer Duncan:Nonlinear Brascamp Lieb inequalities
29:39
Karoly Boroczky:Equality in the Reverse Brascamp Lieb Inequality
22:43
Shohei Nakamura:具有orthonormal initial data的Schrödinger equation的Maximal estimate
31:39
Peter van Hintum:几何不等式的稳定性——连续和离散的视角
16:24
Peter van Hintum:Linear Stability of the Brunn-Minkowski Inequality
01:57:45
Peter van Hintum:Quadratic Stability of the Brunn-Minkowski Inequality
01:57:54
Peter van Hintum:几何不等式的定量稳定性:Prékopa-Leindler和Borell-Brascamp-Lieb
01:05:40
Alessio Figalli:Quantitative Stability in Geometric&Functional Inequalities——1
01:16:21
Alessio Figalli:Quantitative Stability in Geometric&Functional Inequalities——2
01:06:39
Alessio Figalli:Quantitative Stability in Geometric&Functional Inequalities——3
01:09:17
客服
顶部
赛事库 课堂 2021拜年纪