20210731_董彬_Learning and Learning to Solve PDEs
20210703_张林峰_DeePKS: a machine learning assisted electronic structure model
20210403_吴磊_神经网络和高维函数逼近
20210417_许志钦_理解神经网络的训练过程
20210417_李千骁_Machine Learning and Dynamical Systems
20210814_Jinchao Xu_Barron Spaces
20210828_应乐兴_Solving Inverse Problems with Deep Learning
20210717_许志钦_Frequency principle
20211127_朱通_基于神经网络实现碳氢燃料的燃烧模拟
20210828_纪辉_Self-supervised Deep Learning for Solving Inverse Problems
20210522_刘知远_知识指导的预训练语言模型
20211016_孙若愚_Global Loss Landscape of Neural Networks: What do We Know and What
20211030_张仕俊_Deep Network Approximation Achieving Arbitrary Error with Fixed Siz
深度学习基础和实践合集
20210403_韩颉群_利用深度学习求解高维控制问题
20211030_杨海钊_Deep Network Approximation Error Characterization in term of Width
20211016_张耀宇_Embedding Principle of Loss Landscape of Deep Neural Networks
20210814_Arnulf Jentzen_Convergence analysis for the GD optimization method
20210605_Lei Wu_Implicit biases of SGD for neural network models
20210522_文继荣_像孩子一样学习超大规模多模态预训练模型