【ML】斯坦福CS229:机器学习中英文字幕 by Andrew Ng

8.0万
476
2020-04-22 20:20:20
正在缓冲...
1380
1259
7517
583
课程说明:本课程对机器学习和统计模式识别进行了广泛的介绍。主题包括:有监督的学习(生成/区分学习,参数/非参数学习,神经网络,支持向量机);无监督学习(聚类,降维,核方法);学习理论(偏见/方差折衷,实用建议);强化学习和自适应控制。本课程还将讨论机器学习的最新应用,例如机器人控制,数据挖掘,自主导航,生物信息学,语音识别以及文本和Web数据处理。
致力于划水摸鱼的佛系研究生
视频选集
(1/20)
自动连播
1. Lecture 1 - Welcome
01:15:20
2. Lecture 2 - Linear Regression and Gradient Descent
01:18:17
3. Lecture 3 - Locally Weighted & Logistic Regression
01:19:35
4. Lecture 4 - Perceptron & Generalized Linear Model
01:22:02
5. Lecture 5 - GDA & Naive Bayes
01:18:52
6. Lecture 6 - Support Vector Machines
01:20:57
7. Lecture 7 - Kernels
01:20:25
8. Lecture 8 - Data Splits, Models & Cross-Validation
01:23:26
9. Lecture 9 - Approx_Estimation Error & ERM
01:26:03
10. Lecture 10 - Decision Trees and Ensemble Methods
01:20:41
11. Lecture 11 - Introduction to Neural Networks
01:20:14
12. Lecture 12 - Backprop & Improving Neural Networks
01:16:38
13. Lecture 13 - Debugging ML Models and Error Analysis
01:18:55
14. Lecture 14 - Expectation-Maximization Algorithms
01:20:32
15. Lecture 15 - EM Algorithm & Factor Analysis
01:19:48
16. Lecture 16 - Independent Component Analysis & RL
01:18:10
17. Lecture 17 - MDPs & Value_Policy Iteration
01:19:15
18. Lecture 18 - Continous State MDP & Model Simulation
01:20:15
19. Lecture 19 - Reward Model & Linear Dynamical System
01:21:07
20. Lecture 20 - RL Debugging and Diagnostics
01:12:43
客服
顶部
赛事库 课堂 2021拜年纪