专栏/数论中的求和公式

数论中的求和公式

2021年12月04日 12:30--浏览 · --点赞 · --评论
粉丝:616文章:31

在数论中,我们常常遇到类似%5Csum%20u(n)v(n)的和式子,其中u(x)是一阶可导的实值或复值函数,v(n)是数论函数,本章将介绍分析中研究此类和式的一些方法

Abel求和公式(分部求和法)

看到它的另一个名字可能就有同学会想到微积分中的分部积分法

没错,他们其实是有联系的,我们先来回顾一下分部积分法

u(x)%2Cv(x)是[a,b]上连续可积的函数,对它们的乘积微分

%5Cmathrm%20du(x)v(x)%3D%5Clim_%7Bh%5Cto0%7D%20u(x%2Bh)v(x%2Bh)-u(x)v(x)%20

%3D%5Clim_%7Bh%5Cto0%7D%20u(x%2Bh)v(x%2Bh)-u(x%2Bh)v(x)%2Bu(x%2Bh)v(x)-u(x)v(x)%20

%3D%5Clim_%7Bh%5Cto0%7D%20u(x%2Bh)%5Cmathrm%20dv(x)%2Bv(x)%5Cmathrm%20du(x)%20%3Du(x)%5Cmathrm%20dv(x)%2Bv(x)%5Cmathrm%20du(x)

对两边同时从a到b积分

%5Cint_%7Ba%7D%5E%7Bb%7D%5Cmathrm%20du(x)v(x)%3D%5Cint_%7Ba%7D%5E%7Bb%7Du(x)%5Cmathrm%20dv(x)%2B%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)

%5Cint_%7Ba%7D%5E%7Bb%7Du(x)%5Cmathrm%20dv(x)%3Du(b)v(b)-u(a)v(a)-%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)

这就是著名的分部积分法,其实它本身也是一种分部求和法

为了得到Abel求和公式,我们先给出一个定义

  • f(n)为一数论函数,%5CDelta%20f(n)%3Df(n)-f(n-1)称为f(n)差分

我们不难推出它的一些性质

  • %5Csum_%7Ba%3Cn%5Cleq%20b%7D%5CDelta%20f(n)%3Df(%5Bb%5D)-f(%5Ba%5D)

  • %5CDelta%20u(n)v(n)%3Du(n)%5CDelta%20v(n)-v(n-1)%5CDelta%20u(n)

其中%5Bx%5D取整函数,表示不大于x的最大整数

是不是觉得和微积分很像呢?那就对了!

我们在第二个性质中从a到b求和,利用第一个性质得到

%5Cbegin%7Baligned%7D%5Csum_%7Ba%3C%20n%5Cleq%20b%7D%5CDelta%20u(n)v(n)%26%3Du(%5Bb%5D)v(%5Bb%5D)-u(%5Ba%5D)v(%5Ba%5D)%5C%5C%26%3D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%2B%5Csum_%7Ba%3C%20n%5Cleq%20b%7Dv(n-1)%5CDelta%20u(n)%5Cend%7Baligned%7D

因为u(x)一阶可导,所以

%5CDelta%20u(n)%3Du(n)-u(n-1)%3D%5Cint_%7Bn-1%7D%5E%7Bn%7D%5Cmathrm%20du(x)

我们令v(x)%3Dv(%5Bx%5D)%2Cx%5Cin%20R,则

v(n-1)%5CDelta%20u(n)%3D%5Cint_%7Bn-1%7D%5E%7Bn%7Du(x)%5Cmathrm%20dv(x)

上式从a到b求和的过程中,积分区间各不相交且可以很好的合并起来,即

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Dv(n-1)%5CDelta%20u(n)%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20%20du(x)

于是,我们得到

u(%5Bb%5D)v(%5Bb%5D)-u(%5Ba%5D)v(%5Ba%5D)%3D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%2B%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)

%5Cimplies%20%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%3Du(%5Bb%5D)v(%5Bb%5D)-u(%5Ba%5D)v(%5Ba%5D)-%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)

式中的取整符号让它看起来不太美观,身为强迫症的我当然不能忍了

于是我们继续研究一下它

注意到

%5Cbegin%7Baligned%7D%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)%26%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%2B%5Cleft(%5Cint_%7Ba%7D%5E%7B%5Ba%5D%7D%2B%5Cint_%7B%5Bb%5D%7D%5E%7Bb%7D%5Cright)v(x)%5Cmathrm%20du(x)%5C%5C%26%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%2Bv(%5Ba%5D)%5Cint_%7Ba%7D%5E%7B%5Ba%5D%7Ddv(x)%2Bv(%5Bb%5D)%5Cint_%7B%5Bb%5D%7D%5E%7Bb%7D%5Cmathrm%20dv(x)%5C%5C%26%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%2Bv(%5Ba%5D)u(%5Ba%5D)-v(a)u(a)%2Bv(b)u(b)-v(%5Bb%5D)u(%5Bb%5D)%5Cend%7Baligned%7D

%5CRightarrow%20%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%3D%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)-v(%5Ba%5D)u(%5Ba%5D)%2Bv(%5Bb%5D)u(%5Bb%5D)%2Bv(b)u(b)-v(a)u(b)

代入上式得到

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%3Du(b)v(b)-u(a)v(a)-%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)

不难看出它与微积分中的分部积分法只区别在v(n)是一数论函数且v(x)%3Dv(%5Bx%5D)

到这里其实它与真正的分部求和法已经差不了多少了,但还是有点缺一点美观,

而下面的这个就是“正宗货”了

f(x)为一[a,b]上一阶可导的函数,G(n)为一数论函数且G(x)%3DG(%5Bx%5D)%2CG(0)%3D0

g(n)%3D%5CDelta%20v(n),则v(x)%3D%5Csum_%7Bn%5Cleq%20x%7Dg(n)

由上面的结论,得到

  • %5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%3Df(b)G(b)-f(a)G(a)-%5Cint_%7Ba%7D%5E%7Bb%7DG(x)f'(x)%5Cmathrm%20dx

这才得到了大名鼎鼎的Abel分部求和公式■

Euler-Maclaurin求和公式

为了偷懒我将它简称为E-M公式)

f(x)连续可导,由Abel求和公式出发,

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%3Df(b)G(b)-f(a)G(a)-%5Cint_%7Ba%7D%5E%7Bb%7DG(x)%5Cmathrm%20df(x)

不连续的G(x)有点碍眼,但并不妨碍我们对右式的积分用分部积分法

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dG(x)

似乎变得奇怪起来了,但如果可以取得G(x)%3Dp(x)%2Bj(x),使p(x)是一阶可导的

%5Cbegin%7Baligned%7D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dp(x)%2B%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dj(x)%5C%5C%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Dp'(x)f(x)%5Cmathrm%20dx%2Bf(b)j(b)-f(a)j(a)-%5Cint_%7Ba%7D%5E%7Bb%7Dj(x)f'(x)%5Cmathrm%20dx%5Cend%7Baligned%7D

若取g(n)%3D1,则G(x)%3D%5Bx%5D%3Dx-%5Cleft%5C%7Bx%5Cright%5C%7D,可得

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)dx-f(b)%5Cleft%5C%7Bb%5Cright%5C%7D%2Bf(a)%5Cleft%5C%7Ba%5Cright%5C%7D%2B%5Cint_%7Ba%7D%5E%7Bb%7D%5Cleft%5C%7Bx%5Cright%5C%7Df'(x)dx

更合适的是取G(x)%3Dx-%5Cfrac%7B1%7D%7B2%7D%2B%5Cleft(%5Cfrac%7B1%7D%7B2%7D-%5Cleft%5C%7Bx%5Cright%5C%7D%5Cright)

%5Crho%20(x)%3D%5Cfrac%7B1%7D%7B2%7D-%5Cleft%5C%7Bx%5Cright%5C%7D,则

  • %5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dx%2Bf(b)%5Crho%20(b)-f(a)%5Crho(a)-%5Cint_%7Ba%7D%5E%7Bb%7D%5Crho(x)f'(x)%5Cmathrm%20dx

这就是最简单形式的E-M求和公式

不难发现%5Crho%20(x)是周期为1的函数,且%5Cint_%7B0%7D%5E%7B1%7D%5Crho(x)%5Cmathrm%20dx%3D0

%5Csigma(x)%3D%5Cint_%7B0%7D%5E%7Bx%7D%5Crho(u)%5Cmathrm%20du,由积分中值定理,得

%5Cmathrm%20d%5Csigma(x)%3D%5Clim_%7Bh%5Cto0%7D%5Cint_%7Bx%7D%5E%7Bx%2Bh%7D%5Crho(u)%5Cmathrm%20du%3D%5Crho(x)%5Cmathrm%20dx

于是,

%5Cbegin%7Baligned%7D%5Cint_%7Ba%7D%5E%7Bb%7D%5Crho(x)f'(x)%5Cmathrm%20dx%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Df'(x)%5Cmathrm%20d%5Csigma(x)%5C%5C%26%3Df'(b)%5Csigma(b)-f'(a)%5Csigma(a)-%5Cint_%7Ba%7D%5E%7Bb%7D%5Csigma(x)f''(x)%5Cmathrm%20dx%5Cend%7Baligned%7D

代入上面的式子,得

  • %5Cbegin%7Baligned%7D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)dx%2Bf(b)%5Crho%20(b)-f(a)%5Crho(a)-f'(b)%5Csigma(b)%2Bf'(a)%5Csigma(a)%5C%5C%26%5Cquad%20-%5Cint_%7Ba%7D%5E%7Bb%7D%5Csigma(x)f''(x)dx%5Cend%7Baligned%7D

这样我们又得到了E-M求和公式的一种形式

这一求和法在求渐进公式和近似计算中十分有用,且若继续推广,能得到更精确的逼近

但实际运用中常常只用到简单的形式,因此本篇文章不作讨论

Poison求和公式

为了方便,记e(x)%3De%5E%7B2%5Cpi%20ix%7D

f(x)为R上连续且绝对可积的函数

考虑

g(x)%3Df(x%2BnT)%2Cx%5Cin(0%2CT)%2Cn%5Cin%20%5Cmathbb%7BZ%7D%2CT%EF%BC%9E0

易知它是周期为T的函数,令

s(n)%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_%7B0%7D%5E%7BT%7Dg(x)e%5Cleft(-%5Cfrac%7Bnx%7DT%5Cright)dx

由我们对它的定义,有

s(k)%3D%5Cfrac1T%5Cint_%7B0%7D%5E%7BT%7Dg(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%3D%5Cfrac1T%5Cint_%7BnT%7D%5E%7B(n%2B1)T%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du

注意到s(k)g(x)的Fourier展开中的Fourier系数,则

%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7Ds(k)e%5Cleft(%5Cfrac%7Bkx%7DT%5Cright)%3Dg(x)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cleft(%5Cfrac1T%5Cint_%7BnT%7D%5E%7B(n%2B1)T%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%5Cright)e%5Cleft(%5Cfrac%7Bkx%7DT%5Cright)

M%EF%BC%9EN为两个整数,根据积分区间可加性质:

%5Cint_%7Ba%7D%5E%7Bb%7Df(x)dx%2B%5Cint_%7Bb%7D%5E%7Bc%7Df(x)dx%3D%5Cint_%7Ba%7D%5E%7Bc%7Df(x)dx

对n从N累加到M-1,得到

%5Csum_%7Bn%3DN%7D%5E%7BM%7Df(x%2BnT)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cleft(%5Cfrac1T%5Cint_%7BNT%7D%5E%7BMT%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%5Cright)e%5Cleft(%5Cfrac%7Bkx%7DT%5Cright)

此时令M%5Crightarrow%20-%5Cinfty%2CN%5Crightarrow%20%2B%5Cinfty

则括号里的积分变为%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du

不难发现它就是f的Fourier变换,即

%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%3D%5Chat%20f%5Cleft(%5Cfrac%20kT%5Cright)

代入回原式里,就可以得到

  • %5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7Df(x%2BnT)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac1T%20%5Chat%7Bf%7D%5Cleft(%5Cfrac%20kT%5Cright)e%5E%7B2%5Cpi%20ikx%2FT%7D

这就是Poison求和公式了

它最常用的形式就是取x%3D0%2CT%3D1

  • %5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7Df(n)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Chat%20f(k)


投诉或建议